Central Limit Theorem in Multitype Branching Random Walk

author

Abstract:

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Central Limit Theorem for Branching Random Walks in Random Environment

We consider branching random walks in d-dimensional integer lattice with time-space i.i.d. offspring distributions. When d ≥ 3 and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase tran...

full text

Central Limit Theorem for the Excited Random Walk in Dimension

We prove that a law of large numbers and a central limit theorem hold for the excited random walk model in every dimension d ≥ 2.

full text

Approximating the Random Walk Using the Central Limit Theorem

This paper will define the random walk on an integer lattice and will approximate the probability that the random walk is at a certain point after a certain number of steps by using a modified version of the Central Limit Theorem. To accomplish this, we will define the characteristic function of the random walk, find the Taylor expansion of this function, and bound the difference between this f...

full text

Central limit theorems for a branching random walk with a random environment in time

We consider a branching random walk with a random environment in time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The environment is supposed to be stationary and ergodic. For A ⊂ R , let Zn(A) be the number of particles of generation n located in A. We show central l...

full text

Almost sure functional central limit theorem for ballistic random walk in random environment

We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched me...

full text

Almost Sure Functional Central Limit Theorem for Non-nestling Random Walk in Random Environment

We consider a non-nestling random walk in a product random environment. We assume an exponential moment for the step of the walk, uniformly in the environment. We prove an invariance principle (functional central limit theorem) under almost every environment for the centered and diffusively scaled walk. The main point behind the invariance principle is that the quenched mean of the walk behaves...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  207- 220

publication date 2009-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023